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Transition metal catalyzed reactions have been widely used
in hydrocarbon transformations, but the analogous chemistry
in perfluorocarbons is largely unexplored. Although huge
numbers of transition metal complexes containing fluorinated
ligands have been reported, these complexes usually lack the
catalytic activity necessary for useful transformations of fluo-
rocarbons. That is due to the fact that they exhibit dramatically
different structural and bonding characteristics with enhanced
thermal stability in comparison with their hydrocarbon coun-
terparts.1 Fluorinated organometallic reagents have recently
received much attention, but catalytic reactions are much more
attractive for the synthesis of fluorocarbons.2 Although transi-
tion metal complex catalyzed defluorinations of perfluorocarbons
have been reported very recently, other useful metal catalyzed
reactions under conventional conditions remain unknown to the
best of our knowledge.3 We report here the first example of a
transition metal catalyzed reaction of highly fluorinated epoxides
with halogens, which may involve the metal CF2 complex, to
give dihalodifluoromethanes and fluorinated acyl fluorides in
good yields.
Difluorocarbene and its precursors react with iodine to give

very poor yields of CF2I2.4 Reaction of hexafluoropropylene
oxide (HFPO), a well-known difluorocarbene precursor, with
I2 in a stainless steel tube or in a glass tube affords only less
than 15% yield of CF2I2.5,6 We discovered that the reaction of
HFPO with I2 in the presence of 3-10 mol % of Ni powder in
a stainless steel shaker tube or a glass tube resulted in high
yields of CF2I2 and CF3COF, along with small amounts of
I(CF2)nI (n ) 2, 3).

A 400-mL stainless steel shaker tube was charged with 3 g
of Ni powder (Aldrich, 99.99%, 100 mesh) and 127 g of I2 and
cooled to-78 °C. After evacuating, 90 g of HFPO was added
and the tube was vigorously shaken at 185°C for 8 h. Gas
(CF3COF) was transferred into a-78 °C trap and 146.3 g of
crude liquid product was distilled to give 116.8 g (78%) of a
64.3:1:4.7 (GC area) mixture of CF2I2, I(CF2)2I, and I(CF2)3I .
Other catalysts containing nickel such as Ni/Zn (Urushibara
catalyst) and Ni/Cu/Zn also catalyze the reaction.7,8 The success
in the reaction with Ni alloys prompted us to use a vessel with
high nickel content as a reactor. Indeed, the reaction proceeded
well in a Hastelloy C reactor to give greater than 85% of CF2I2
in the absence of added nickel catalyst.9

Reaction of HFPO with bromine under similar conditions
gave CF2Br2 and CF3COF with traces of Br(CF2)nBr (n ) 2,
3). The reaction proceeded in a Hastelloy C vessel or in a
stainless steel vessel with Ni powder, but only a very low yield
(<5%) of CF2Br2 was observed in the absence of nickel powder
in a stainless steel tube. Since this is a heterogeneously
catalyzed reaction, vigorous shaking or agitating is critical to
achieve high yields of the desired products. The reaction could
also be carried out in inert solvents such as fluorochlorocarbons
or perfluorocarbons, but the absence of solvent greatly simplified
the workup process and minimized waste with similar yields
and selectivites compared to the reaction in solvents.
The nickel catalyzed reaction also can be carried out with

interhalogens such as I-X (X ) Br, Cl). With I-Br and HFPO
at 190°C in a Hastelloy C shaker tube, a 1:1:0.29 (mol) mixture
of CF2I2, CF2Br2, and CF2IBr was isolated in 74% total yields.
Similarly, the major product with I-Cl was CF2I2 (58% yield
base on I-Cl) along with CF2ICl (9% yield based on I-Cl)
and CF2Cl2.10 In both cases, traces of higher homologues
X(CF2)nY (X, Y ) halogen andn ) 2, 3) were also detected
by GC-MS and19F NMR analysis.

The nickel catalyzed reaction is general and works well with
other fluorinated epoxides. The perfluorophenyl, perfluorosul-
fonyl fluoride, and chlorofluorocarbon groups in the epoxides
did not interfere with the reaction. The reaction of these
fluorinated functionalized epoxides with I2 in the presence of
Ni powder in a sealed glass tube with vigorous shaking at 190
°C afforded good yields (68-81%) of CF2I2 and the corre-
sponding fluorinated acyl fluorides.⊥ Publication No. 7414.
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The precise mechanism for this nickel catalyzed reaction is
unclear. Initially, NiIII2 generated from the reaction of iodine
with nickel powder was suspected as a catalytic species.
However, the recovered dark powder after reaction was a
mixture of Ni(0) and NiIII2 as determined by X-ray diffraction.11

As a control experiment, we carried out the reaction with NiIII2
(Aldrich, 99.99%) as a catalyst under identical conditions; no
desired CF2I2 was obtained. Subhalide NiII has also been
considered as a catalytic species, since Ni(I) complexes in either
homogeneous solution or on silica support were formed by
reaction of Ni(0) and Ni(II) complexes or by reduction of Ni-
(II).12 Such a possibility may not be the case in this reaction
because when a mixture of powdered nickel and NiIII2 was
heated at above 180°C, even in the molten state, no evidence
for the formation subhalide NiI was observed; thus, NiII seems
unlikely to be the catalytic species.13 We propose that nickel
atoms are the catalytic center where the fluorinated epoxide first
adsorbs and then undergoes oxidative addition to give fluori-
nated oxanickel cyclobutaneA and/orB, which rapidly decom-
pose to CF3COF and nickel difluorocarbeneC.14-16 The
formation of NidCF2 C may alter the reactivity of the carbene
carbon from electrophilic to nucleophilic, resulting in facile
reaction with halogens to give intermediateD.17 Finally,
reductive elimination could give CF2X2 and regenerated nickel
(Scheme 1). The formation of small amounts of higher
homologues X(CF2)nX (n ) 2, 3) is consistent with reaction of
halogens with the dimer or trimer of CF2.18

In conclusion, we have discovered an unprecedented nickel
catalyzed reaction of highly fluorinated epoxides with halogens
at elevated temperatures. Since HFPO is a readily available
material, the reaction provides the first useful synthesis of CF2I2
which is an important building block for the preparation of other
fluorinated compounds, but heretofore has been extremely
difficult to obtain.4,5,16,19 In addition, the high value of by-
product, fluoroacyl fluoride, the absence of solvent, and high
yields make this reaction more attractive for the synthesis of
functional fluorocarbons on a large scale. Mechanistic studies
and further applications of the novel chemistry are currently in
progress.
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